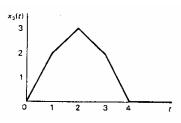
OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 3723 Systems I Spring 2003

Midterm Exam #1

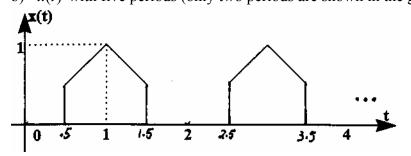
DO ALL FIVE PROBLEMS


Name : ______

Student ID:

E-Mail Address:_____

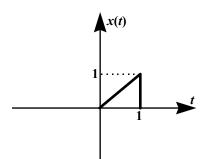
Problem 1: (Signal Representation)


Make a labeled sketch of the $y(t) = -x(3-3t) + 0.5x(\frac{t}{2}-1)$, where x(t) is given below.

<u>Problem 2</u>: (*Laplace Transform*) Find the Laplace transforms of

a) $\int_0^t e^{-2\lambda} \cos(\omega \lambda + \theta) d\lambda$, and

b) x(t) with five periods (only two periods are shown in the graph).


Problem 3: (*Inverse Laplace Transform*) Find the Inverse Laplace transforms of

a)
$$\frac{s^2}{s^2+2as+b}$$
, and

b)
$$e^{-4s}\ln\frac{s+a}{s+b}$$
.

<u>Problem 4</u>: (Solution of Differential Equation)

Consider a filtered circuit that the output response, y(t), is the time-convolution of the input signal, x(t), and the impulse response, h(t), of the system where $h(t) = e^{-2t}u(t)$ (i.e., $y(t) = \int_0^t x(\tau)h(t-\tau)d\tau$). x(t) is graphically given as

Determine y(t) and find the transfer function of the system, H(s).

<u>Problem 5</u>: (*Transfer Function*)

A continuous-time system is defined by the following differential equation

$$\frac{d^2 y(t)}{dt^2} + 5 \frac{d^2 x(t)}{dt^2} - \frac{dy(t)}{dt} + 3y(t) - 2x(t) = 0,$$

where x(t) is the input and y(t) is the output of the system. Find its equivalent representation in

transfer function, $H(s) = \frac{Y(s)}{X(s)} = \frac{\mathcal{L}(y(t))}{\mathcal{L}(x(t))}.$