OKLAHOMASTATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 3723 Systems I
Spring 2003
Midterm Exam \#1

do all five problems

Name: \qquad

Student ID: \qquad

Problem 1: (Signal Representation)

Make a labeled sketch of the $y(t)=-x(3-3 t)+0.5 x\left(\frac{t}{2}-1\right)$, where $x(t)$ is given below.

Problem 2: (Laplace Transform)
Find the Laplace transforms of
a) $\int_{0}^{t} e^{-2 \lambda} \cos (\omega \lambda+\theta) d \lambda$, and
b) $x(t)$ with five periods (only two periods are shown in the graph).

Problem 3: (Inverse Laplace Transform)
Find the Inverse Laplace transforms of
a) $\frac{s^{2}}{s^{2}+2 a s+b}$, and
b) $e^{-4 s} \ln \frac{s+a}{s+b}$.

Problem 4: (Solution of Differential Equation)

Consider a filtered circuit that the output response, $y(t)$, is the time-convolution of the input signal, $x(t)$, and the impulse response, $h(t)$, of the system where $h(t)=e^{-2 t} u(t)$ (i.e., $\left.y(t)=\int_{0}^{t} x(\tau) h(t-\tau) d \tau\right) . \mathrm{x}(\mathrm{t})$ is graphically given as

Determine $y(t)$ and find the transfer function of the system, $H(s)$.

Problem 5: (Transfer Function)
A continuous-time system is defined by the following differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d^{2} x(t)}{d t^{2}}-\frac{d y(t)}{d t}+3 y(t)-2 x(t)=0
$$

where $x(t)$ is the input and $y(t)$ is the output of the system. Find its equivalent representation in transfer function, $H(s)=\frac{Y(s)}{X(s)}=\frac{\mathcal{L}(y(t))}{\mathcal{L}(x(t))}$.

